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Abstract—We examine the impact of limited channel knowl-
edge on the secondary user (SU) in a cognitive radio system.
Under a minimum signal-to-interference-and-noise ratio (SINR)
constraint for the primary user (PU) receiver, we determine
SU capacity under five channel knowledge scenarios. We derive
analytical expressions for the capacity cumulative distribution
functions and the probability of SU blocking as a function of
allowable interference. We show that imperfect knowledge of the
PU-PU link gain by the SU-Tx often prohibits SU transmission
or necessitates a high interference level at the PU. We also show
that errored knowledge of the PU-PU channel is more beneficial
than statistical channel knowledge and that imperfect knowledge
of the SU-Tx to PU-Rx link has limited impact on SU capacity.

I. I NTRODUCTION

A large body of work is now available on various aspects
of CR systems, including fundamental information theoretic
capacity limits and performance analysis, which often assumes
perfect SU-Tx to PU-Rx channel state information (CSI) [1]–
[7]. In practice, there is expected to be limited (or no) col-
laboration between PU and SU systems. Hence, an important
question is the impact of the nature of channel knowledge
on CR capacity. Several recent contributions have considered
imperfect CSI [8]–[14]. In [8], mean and outage capacities
along with optimum power allocation policies have been
investigated for a CR system in a fading environment with
imperfect CSI. Here, probabilistic constraints were employed
to maintain an acceptably low probability that interference
exceeded some target. In our work, we also use probabilistic
constraints, but apply them to a signal-to-interference noise
ratio (SINR) target.

This paper differs from the existing literature in several
ways. There are four link gains in a two user PU/SU channel
to consider and each of them may or may not be perfectly
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known at the SU transmitter. Previous studies [8]–[10], [12],
[14] have only assumed imperfect knowledge of the SU-Tx
to PU-Rx link. Additionally, in previous work, the effect of
the interference from the PU-Tx on SU capacity is ignored.
Also, we employ the SINR at the PU-Rx to impose proba-
bilistic constraints to protect the PU-Rx, while prior works,
with the exception of [10], have considered an interference
outage constraint. Finally, we consider several cases where the
imperfect CSI manifests itself in the form of statistical channel
knowledge (i.e., knowledge of the mean link gains). Such a
form of imperfect CSI is attractive from a practical stand point,
since obtaining accurate knowledge is almost impossible for
some links, such as the PU-Tx to PU-Rx link. Moreover, the
mean value does not impose a large system burden as it only
requires infrequent updates. Note that the inclusion of PU-Tx
to SU-Rx interference and probabilistic constraints enables a
rigorous evaluation of the benefits of various types of CSI.
In this paper, we establish the following key observations and
results:

• In four of the five scenarios considered, we derive analyt-
ical expressions for the cumulative distribution function
(cdf) of the SU SINR and use it to evaluate the SU
capacity cdf.

• For all scenarios, we derive the probability of SU block-
ing as a function of the permissible interference at the
PU-Rx.

• By evaluating our results for a range of system pa-
rameters, we demonstrate the importance of accurate
knowledge of the PU-Tx to PU-Rx link at the SU-Tx.

• We demonstrate the very high sensitivity of SU perfor-
mance to the error in the estimation of the PU-Tx to
PU-Rx and SU-Tx to PU-Rx links.

• We show that errored knowledge of the PU-Tx to PU-Rx
link and SU-Tx to PU-Rx link (if available) is better for
SU capacity than a knowledge of the mean link gains.

• By considering a single probabilistic SINR constraint, a
unified framework is presented which enables fair com-
parisons between different types of channel knowledge.

II. SYSTEM MODEL

Consider a CR system (shown in Fig. 1) with the SU-
Tx and PU-Tx transmitting simultaneously to their respec-
tive receivers. Independent point-to-point flat Rayleigh fading
channels are assumed for all links. Letgp = |hp|

2, gs = |hs|
2,

gps = |hps|
2 and gsp = |hsp|

2 denote the exponentially
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Fig. 1. System Diagram.

distributed instantaneous link gains of the PU-Tx to PU-Rx,
SU-Tx to SU-Rx, PU-Tx to SU-Rx and SU-Tx to PU-Rx links,
respectively, withΩp = E(gp),Ωs = E(gs), Ωps = E(gps) and
Ωsp = E(gsp), whereE(·) denotes the expectation operator.

As described further in this Section, the SU transmission
under the SINR constraint is governed solely by the state of
the gp and gsp links1. Thus, in this paper we consider the
following five scenarios for the knowledge ofgp and gsp by
the SU-Tx.

Scenario 1: The link gains,gp andgsp, are perfectly known.
This clearly unrealistic scenario serves as a benchmark for
comparison.

Scenario 2: The link gain,gp, is perfectly known while only
the mean,Ωsp, of gsp is known.

Scenario 3: The mean,Ωp, and the exact link gain,gsp,
are known. In contrast toScenario 2, this case is considered
mainly for completeness.

Scenario 4: Only the means,Ωp andΩsp, are known. This
scenario arises when only statistical information about the
channels is available to the SU-Tx as a result of limited
feedback resources.

Scenario 5: Only estimates ofgp andgsp are available. This
may arise due to channel estimation, feedback quantisationand
delay.

Where possible, we impose a constraint,γT, on the PU-Rx
SINR, denoted byγp. Hence,

γp =
Ppgp

Psgsp + σ2
p

, andγp ≥ γT, (1)

whereγT is an SINR threshold,Pp is the PU transmit power
(assumed to be fixed and known to the SU-Tx in all scenarios),
andσ2

p is the additive white Gaussian noise (AWGN) variance
at the PU-Rx.Ps is a provisional maximum value for the SU
transmit power chosen to satisfy the relevant criteria, (1)in this
case. The actual SU transmit power,Pt is a function ofPs. For
example, if the PU-Rx SNR lies in the region,Ppgp/σ

2
p < γT,

then (1) cannot be satisfied unlessPs < 0 and as a result,
Pt = 0. If the PU SNR is above the SINR thresholdγT, the
SU-Tx will adaptPs to a maximum level satisfying (1) as
determined under the five scenarios, regardless of the gaings.

1The link gainsgs and gps have an impact on achievable SU capacity,
however the level of their knowledge by the SU-Tx does not impact the
transmit power.

We also impose a maximum SU transmit power constraint,
Pm. Thus, inScenario 1, where the SU-Tx knowsgp, Pt is
given by

Pt =

{

0
Ppgp
γT

< σ2
p

min (Ps, Pm) otherwise,
(2)

wherePs is obtained from (1) by solvingγT = γp. Further-
more, the constraints described above can only be guaranteed
if the SU-Tx has perfect knowledge of the gainsgp and
gsp, i.e., underScenario 1. In analysingScenarios 2-5, we
use probabilistic constraints. Hence, we require the SINR
constraint to hold with an acceptably high probability,1− α,
whereα is small.

In analysing the SU capacity, we first consider the SINR at
the SU-Rx, denoted byγI,

γI =
Ptgs

Ppgps + σ2
s

, (3)

whereσ2
s is the AWGN variance at the SU-Rx andPpgps is

the interference from PU-Tx, treated as noise in the capacity
calculations. We denote the pdf and cdf ofγI by fγI(x) and
FγI(x), respectively. The instantaneous SU capacity is given
by C = log2 (1 + γI), where the mean,̄C, can be derived
usingfγI(x) as

C̄ = E(C) =

∫

∞

0

log2 (1 + x) fγI(x) dx. (4)

The cdf ofC can be obtained fromFγI(x) by noting that

FC(y) = Pr(γI ≤ 2y − 1) = FγI(ỹ), (5)

where Pr(·) denotes probability and̃y = 2y−1. Using (3), we
can express (5) as

FγI(ỹ) = Egps

{

Pr
(

Ptgs < ỹ(σ2
s + Ppgps)

)

∣

∣

∣

∣

∣

gps

}

=

∫

∞

0

Fγ
(

ỹ(σ2
s + Ppv)

) e−v/Ωps

Ωps
dv, (6)

where we have definedγ = Ptgs with a cdf Fγ(x). In what
follows, we derive expressions forFγ(x) which, using (5) and
(6), allows us to compute the capacity cdf.

We parameterize the main system variables by two key
parameters. The first,c1 = Ωsp/Ωs, represents the ratio of
the mean interference at the PU-Rx to the mean of the desired
channel strength for the SU. The second,c2 = γTσ

2
p/PpΩp,

is the ratio of the minimum target SINR to the mean SNR
at the PU-Rx. Hence, increasingc2 corresponds to reducing
the allowable interference (withc2 = 1 corresponding to zero
average allowable interference).

III. SU CAPACITY

The capacity mean in (4) and the cdf in (6) require a
knowledge of the distributions ofγ = Ptgs and γI. Hence,
in this section we derive the cdfs forγ andγI for Scenarios
1-4. For Scenario 5, an alternative approach is required (see
Section III-E).
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A. Scenario 1

In this scenario,Ps can be obtained directly from (1), giving

Ps =

Ppgp
γT

− σ2
p

gsp
. (7)

We note that while we ignore thePt = 0 case in (2), the
following derivation is valid since Pr(γ > 0) = 0 for Pt ≤ 0.
In finding Fγ(x), we solve for the complementary cdf given
by

Pr(γ > x) = Pr(gs min(Pm, Ps) > x)

= Pr

(

gs >
x

Pm
,

(

Ppgp
γT

− σ2
p

)

gs > xgsp

)

. (8)

Noting that gp is an exponentially distributed RV, we can
rewrite (8) by taking the conditional probability overgp and
then averaging overgs andgsp. This gives,

Pr(γ > x) =
e
−

γTσ
2
p

PpΩp

ΩspΩs

∫

∞

x
Pm

e−
u
Ωs

γTx
PpΩpu

+ 1
Ωsp

du. (9)

After simplifying (9), the cdfFγ(x) = 1− Pr(γ > x) can be
shown to be [15, Eq. (3.351.2)]

Fγ(x) = 1− e
−

γTσ
2
p

PpΩp

[

e−
x

PmΩs −
ΩspγTx

PpΩpΩs
e

ΩspγTx

PpΩpΩs (10)

× Γ

(

0,
ΩspγTx

PpΩpΩs
+

x

PmΩs

)

]

,

whereΓ(·, ·) is the upper incomplete gamma function. Substi-
tuting (10) into (6) results in

FγI (ỹ) = 1−
PmΩse

−

(

γTσ
2
p

PpΩp
+

ỹσ2s
PmΩs

)

PmΩs + ỹPpΩps
(11)

+
ΩspγTỹ

ΩpsΩpΩsPp
exp

{

ΩspγTσ
2
p

ΩpΩsPp

(

ỹ −
Ωs

Ωsp

)

}

×

∫

∞

0

(

σ2
p + Ppv

)

exp

{(

ΩspγT
ΩpΩs

ỹ −
1

Ωps

)

v

}

× Γ

(

0,
ΩspγTPm + PpΩp

PpPmΩpΩs
(σ2

p + Ppv)ỹ

)

dv.

To the best of the authors’ knowledge, the integral in (11) does
not have a closed-form solution. In Section IV, the capacity
cdf results are obtained by numerical integration.

In order to obtain the expression for mean capacity, we can
derive the pdf,fγI(x), by differentiating (11) with respect to
ỹ. Alternatively, using (6) we have

fγI(ỹ) =

∫

∞

0

(σ2
p + Ppv)fγ(ỹ(σ

2
p + Ppv))

e−v/Ωps

Ωps
dv,

(12)

wherefγ(x) was computed in [16] as,

fγ(x) = e
−

γTσ
2
p

PpΩp

[

(

1

PmΩs
−

ΩspγT
PpΩpΩs

)

e−
x

PmΩs (13)

+ e
ΩspγTx

PpΩpΩs

(

(ΩspγT)
2x

(PpΩpΩs)2
+

ΩspγT
PpΩpΩs

)

× Γ

(

0,
ΩspγTx

PpΩpΩs
+

x

PmΩs

)

]

.

The expression resulting from substituting (13) into (12)
cannot be written in closed-form. Thus, the mean capacity,
C̄, must be calculated numerically by substituting (13) into
(12) and (4).

B. Scenario 2

In Scenarios 2-5, with imperfect channel knowledge, the SU
cannot guarantee that (1) is satisfied. Thus, we constrain the
SU to satisfy (1) with an acceptably high probability,1− α.

Hence, forScenario 2, where the SU knows only the mean,
Ωsp, of gsp, we consider the probability of satisfying the SINR
constraint with a probability of1− α. This gives

Pr

(

Ppgp
Psgsp + σ2

p

≥ γT

∣

∣

∣

∣

∣

gp,Ωsp

)

= 1− α. (14)

Rewriting in terms of the cdf ofgsp, we derivePs as

Ps = −
Ppgp − γTσ

2
p

ln(α)γTΩsp
. (15)

Using (15), the complementary cdf ofγ can be shown to be

Pr(γ > x) = E

[

Pr
(

Pmgs > x,Psgs > x
∣

∣

∣gp

)]

, (16)

which can be expressed as

Pr(γ > x) =

∫ ψ

ψ0

Pr

(

gs >
x

Ps

)

fgp(y) dy (17)

+

∫

∞

ψ

Pr

(

gs >
x

Pm

)

fgp(y) dy,

whereψ0 =
γTσ

2
p

Pp
and ψ =

γT(σ2
p−Pm ln(α)Ωsp)

Pp
. The lower

integration limit in the first term of (17) takes into account
thePt = 0 condition in (2). After some manipulation, we can
simplify (17) to obtainFγ(x) = 1− Pr(γ > x) as,

Fγ(x) = 1− exp

{

−
x

PmΩs
−

ψ

Ωp

}

−
1

Ωp

∫ ψ

ψ0

e
−

ln(α)γTΩspx

(γTσ
2
p−Ppy)Ωs e

−
y

Ωp dy. (18)

Once again, there exists no closed-form solution to the integral
in (18). Following the same approach as inScenario 1, we use
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(18) and (6) to findFγI(ỹ) as

FγI(ỹ) = 1−
PmΩse

−

(

ỹσ2p
PmΩs

+ ψ
Ωp

)

ΩpsPpỹ + PmΩs
(19)

+
1

Ωs

∫ ψ

ψ0

e
−

(

ΩspγTσ
2
p lnαỹ

γTσ
2
pΩs−PpΩsz

+ z
Ωs

)

×
γTσ

2
pΩs − PpΩsz

γTσ2
pΩs +ΩspγTPpΩps ln(α)ỹ − PpΩsz

dz.

Here, again, the capacity cdf is obtained using (5) and numer-
ically integrating (19).

To compute the SU mean capacity, we differentiate (19)
with respect tõy to find the pdf

fγI(x) = −σ2
pe

−

(

xσ2p
PmΩs

+ ψ
Ωp

)

(20)

+
ΩspγTσ

2
p ln(α)

Ωs

∫ ψ

ψ0

e
−

(

ΩspγTσ
2
p ln(α)x

γTσ
2
pΩs−PpΩsz

+ z
Ωs

)

× (γTσ
2
pΩs +ΩspγTPpΩps ln(α)x− PpΩsz)

−2

×
(

(γTσ
2
pΩs − PpΩsz)(ΩspγTPpΩps lnα− 1)

+ ΩspγTPpΩps ln(α)x) dz.

The mean capacity is then computed by substituting (20) into
(4) and numerically integrating.

C. Scenario 3

In Scenario 3, where the SU has exact knowledge ofgsp
and knows only the meanΩp, we once again satisfy the SINR
constraint with a probability of1− α. Hence,

Pr

(

Ppgp
Psgsp + σ2

p

≥ γT

∣

∣

∣

∣

∣

Ωp, gsp

)

= 1− α. (21)

Following the same approach as forScenario 2 , one can show
that

Ps = −

(

ln(1− α)PpΩp

γT
+ σ2

p

)

1

gsp
. (22)

From (22), the SU SINR cdf,FγI(ỹ), can be derived as (see
[17, Appendix A] for details)

FγI (ỹ) = 1− s(ỹ)− h(ỹ)E1(r(ỹ)), (23)

wheres(ỹ), h(ỹ) andr(ỹ) are given by

s(ỹ) =
K1e

−bỹ

1 + aỹ
, h(ỹ) =

K2e
−bỹ+r(ỹ)

ỹ
, (24)

r(ỹ) =
(PpΩpsỹ + PmΩs)(σ

2
sΩspỹ +QΩs)

PmPpΩsΩpsΩspỹ
,

with constants,K1 = 1 − eQ/PmΩsp , K2 = QΩse
Q/PmΩsp

PpΩpsΩsp
,

a =
PpΩps

PmΩs
andb = σ2

s /PmΩs. Hence,

fγI (ỹ) = −s′(ỹ)− h′(ỹ)E1(r(ỹ)) + h(ỹ)r′(ỹ)
e−r(ỹ)

r(ỹ)
, (25)

wheres′(ỹ), h′(ỹ) andr′(ỹ) are the derivatives of (24).

D. Scenario 4

When the SU-Tx has knowledge of onlyΩp andΩsp, then
we have

Pr

(

Ppgp
Psgsp + σ2

p

≥ γT

∣

∣

∣

∣

Ωp,Ωsp

)

= 1− α. (26)

Using conditioning and after some manipulation,Ps can be
derived as

Ps =
PpΩp

γTΩsp







e
−

γTσ
2
p

PpΩp

1− α
− 1






. (27)

Here,Ps andPt are deterministic, depending on the system
parameters. The latter is given by

Pt =







0 Ps < 0
Ps 0 < Ps < Pm

Pm Ps > Pm.
(28)

Using (28), we obtain the cdf ofγ = Ptgs, which, when
substituted into (6) and (5), results in

FC(y) = 1−
PtΩs

ỹPpΩps + PtΩs
e−

ỹσ2s
PtΩs . (29)

In order to compute the mean capacity,C̄, we note thatFγI (x)
can be trivially derived from (29) and (5). Differentiatingto
obtainfγI (x) and substituting into (4), one obtains

C̄ =
1

ln(2)

∫

∞

1

(

σ2
s

PpΩpst+ PtΩs
+

PtPpΩsΩps

(PpΩpst+ PtΩs)
2

)

× ln(t)e
−tσ2s
PtΩs dt, (30)

where we have used the change of variable,t = 1 + x.

E. Scenario 5

Here, the SU-Tx operates on estimates ofgp and gsp. In
such a case, we aim to satisfy:

Pr

(

Ppgp ≥ γTPsgsp + γTσ
2
s

∣

∣

∣

∣

ĝp, ĝsp

)

= 1− α, (31)

which must be solved forPs. We use the classic model for
imperfect CSI [9] given bŷh = ρh +

√

1− ρ2ǫ, whereh is
a generic channel coefficient,ρ controls the level of CSI,ǫ
is statistically identical toh and ĝ = |ĥ|2. The complexity of
(31) makes further capacity analysis infeasible. Instead,(31)
is derived in [17, Appendix B] and is shown to be equivalent
to

∞
∑

j=0

(λ1/2)
j

j!
e−λ1/2

(

1− e−
λ2+β

2 e
λ2

4(δ+1)

√

8

λ2(δ + 1)
(32)

×

j
∑

r=0

r
∑

s=0

(

β

2

)r

(

2δ
β(δ+1)

)s

(r − s)!
M−s−1/2,0

(

λ2
2(δ + 1)

)



 = α,

where λ1 = 2ρ2ĝp/(Ωp(1 − ρ2)), λ2 = 2ρ2ĝsp/(Ωsp(1 −
ρ2)), β = 2σ2

s γT/(Ωp(1−ρ
2)Pp), δ = γTPsΩsp/(ΩpPp) and

Mµ,ν(·) is a Whittaker function.Ps is then computed using a
numerical root finder to solve (32) and the resulting value is
used in capacity simulations.
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F. SU Blocking

Using the results in Sections III-A - III-D, we derive the SU
blocking conditions, that is the probability or condition under
which the SU cannot transmit due to the constraint (1).

In the case ofScenarios 1 and 2, wherePs is dependent on
the instantaneous value ofgp, via (7) and (15), respectively,
we can compute the probability of SU blocking, by solving
for Pr(Pt ≤ 0) or equivalently Pr(Ps ≤ 0). It is easily shown
that for Scenarios 1 and 2

Pr(Pt ≤ 0) = 1− e
−

γTσ
2
p

ΩpPp = 1− e−c2 . (33)

For Scenarios 3 and 4, the SU blocking condition is
determined purely from the system parameters, and can be
obtained by settingPs ≤ 0 in (22) and (27), respectively.
Here, the SU blocking condition is related toα andc2 by

Pt = 0 if α ≤ 1− e
−
γTΩp

σ2pPp = 1− e−c2 . (34)

Using (34), we note that for small values ofα, that is where
we guarantee the PU SINR constraint with high probability,
the SU blocking condition is approximated byα ≤ c2.

For Scenario 5, blocking occurs when (31) can not be
satisfied, even forPs = 0. Hence, the boundary of the blocking
region is equivalent to

Pr

{

Pr

(

gp ≥
γTσ

2
p

Pp

∣

∣

∣

∣

∣

ĝp

)

= 1− α

}

. (35)

In [17], the probability in (35) is rewritten as

Pr

(

X ≥
2c2

1− ρ2

∣

∣

∣

∣

∣

ĝp

)

= 1− α, (36)

whereX is a non-central Chi-squared variable with 2 degrees
of freedom and non-centrality parameter,2ρ2ĝp/(Ωp(1−ρ

2)).
We solve (36) by a simple root-finder, to find the threshold
value, ĝp = g∗, which satisfies (36). Then, the blocking
probability is simply

Pr(ĝp < g∗) = 1− e−g
∗/Ωp . (37)

IV. SIMULATION RESULTS AND DISCUSSION

In all simulations, we have setPp/σ
2
p = Pm/σ

2
s = 0 dB

and Ωp/σ
2
p = Ωs/σ

2
s = 5 dB, where we assumeσ2

p = σ2
s .

In Scenarios 2-5 we setα = 0.1, and ρ = 0.9 is used in
Scenario 5, unless otherwise indicated in the figures. Figures
2, 3 and 5 show the SU capacity cdfs for various scenarios and
a range ofc1, c2 values. Figure 5, withc1 = 0.01, represents
very favourable SU operating conditions. Figure 3 (c1 = 0.1,
c1 = 0.9) represents increasingly difficult conditions for the
SU.

From these results, we observe thatScenarios 1 and 2
result in similar performance, even in the case ofc1 = 0.9
(Fig. 3), that is where the SU interference is very prominent.
Furthermore, lack of knowledge of the PU-PU link (knowing
only the meanΩp) greatly reduces the achievable capacity of
the SU. This is shown in Figs. 2 and 3 whereScenarios 3 and
4 suffer a considerable loss in comparison toScenarios 1 and
2. Hence, knowledge ofgp is more important thangsp.
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Fig. 2. SU capacity cdf forScenarios 1-5 (c1 = c2 = 0.1).
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The dependence onc1 can be observed by comparing Figs. 2
and 3. Under very favourable conditions,c1 = 0.01, Scenarios
3 and 4 slightly outperformScenarios 1 and 2. This seemingly
counterintuitive result is due to the flexibility afforded by
the probabilistic SINR constraint. This is confirmed by the
additional cdfs forScenarios 3 and 4 in Fig. 3, withα = 0.096,
where the protection of PU SINR with higher degree of
certainty causes degradation of performance forScenarios 3
and 4 below that forScenarios 1 and 2.

From Fig. 3, we observe that placing the SU in a demanding
environment,c1 = 0.9, results in very poor performance under
Scenarios 3 and 4. Furthermore, the performance ofScenario
2 is noticeably degraded from that ofScenario 1. Further
insight into this is provided by Fig. 4, which shows the cdf
of the SU transmit power,Pt, for c1 = 0.1 and c1 = 0.9.
We observe that in the latter case, the SU-Tx underScenario
1 operates at maximum power,Pt = 1, with a likelihood of
70 %, compared to approximately 50 % forScenario 2. This
difference is much less pronounced for the less challenging
case ofc1 = 0.1. Finally, based on Figs. 2 and 3, we observe
that the performance underScenario 5 is not highly dependent
on the value ofc1.

Comparing the curves forScenarios 3 and 4 with those
for Scenario 5 in Fig. 3, we note that, for the most part,
imperfect knowledge of the link gains is more beneficial thana
knowledge of their means. Only in the low capacity regime we
observe thatScenarios 3 and 4 outperformScenario 5, which
has a relatively high blocking probability for the parameters
considered. It should be noted, however, that blocking in
Scenarios 3 and 4 is dictated by the parameterc2 and thus,
unless (34) is satisfied, the capacity cdfs for these scenarios
originate at zero. Consequently, at higher capacity valuesthere
exists a crossover point withScenario 5.

Figures 2 and 3 compare the scenarios usingc2 = 0.1,
which is very generous to the SU. From (34), we see that SU
transmission inScenarios 3 and 4 occurs only for large values
of α or for small values ofc2. That is, without the knowledge
of gp, the SU can only operate if the PU is willing to accept
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Fig. 6. SU capacity outage values forScenarios 1, 2 and 5 vsc1 (c2 = 0.5,
c2 = 0.9).
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Fig. 7. Blocking probability forScenarios 1, 2 and 5 for vsc2.

large amounts of interference. Figure 5 presents the capacity
results forScenarios 1 and 2 with the more realistic values of
c2 = 0.5 and c2 = 0.9, where (34) prevents SU transmission
underScenarios 3 and 4. While SU transmission is possible
underScenario 5, we observe a high blocking probability of
0.73 and 0.88 forc2 = 0.5 andc2 = 0.9, respectively.

Figure 6 shows the probability Pr(C ≤ 0.5) as a function of
c1. As expected, for a constantc2, the performance underSce-
nario 2 diverges from the baselineScenario 1 with increasing
c1, that is as the amount of interference to the PU increases.

Finally, Fig. 7 shows the blocking probability forScenarios
1, 2 and 5. We recall that the SU ability to transmit in
Scenarios 3 and 4 is deterministic and governed by the
blocking condition of (34). The results forScenario 5 were
obtained numerically via (36). We observe that as the channel
knowledge error decreases (ρ → 1), the blocking probability
approaches that ofScenarios 1 and 2. Specifically, referring
back to Fig. 5, we note from Fig. 7 whereρ = 0.9 that
improving the channel estimate toρ = 0.99 will reduce
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the blocking probability atc2 = 0.5 and c2 = 0.9 to
0.5 and 0.7, respectively, thus bringing the performance of
Scenario 5 closer to that ofScenario 1. Similarly, relaxing the
probabilistic SINR constraint by increasingα to 0.3 results in a
significant reduction in blocking probability, as fully expected.

V. CONCLUSIONS

We have examined the effects of limited channel knowledge
on the SU capacity. Considering five scenarios, we derived
(in four cases) analytical expressions for the SU capacity
cdf under a PU-Rx SINR constraint. We determined the SU
blocking probability and blocking conditions as a functionof
the allowable interference at the PU-Rx. The results demon-
strate the importance of the PU-PU CSI, which was shown
to be much greater than that of the SU-Tx to PU-Rx link.
Furthermore, we have shown that in challenging situations
or in the presence of CSI error there can be extremely large
blocking probabilities for the SUs.
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